Literature Review

What is a literature review?
A literature review is a survey of scholarly sources that provides an overview of a particular topic. Literature reviews are a collection of the most relevant and significant publications regarding that topic in order to provide a comprehensive look at what has been said on the topic and by whom. The basic components of a literature review include

- a description of the publication;
- a reference to the author’s credentials;
- a summary of the publication’s main points;
- an evaluation of the publication’s contribution to the topic.

What is the difference between a literature review and an annotated bibliography?
An annotated bibliography is a list of your references with a summary of the content and the publication’s relationship to your research question. A literature review is an overview of the topic, an explanation of how publications differ from one another, and an examination of how each publication contributes to the discussion and understanding of the topic.

What is the purpose of a literature review?
The purpose of a literature review is to provide a review of writings on the given topic in order to establish the reviewer’s own position in the existing field of scholarship on that topic. A literature review provides a reader with a comprehensive look at previous discussions prior to the one the reviewer will be making in his/her own research paper, thesis, or dissertation. In short, a literature review shows readers where the reviewer is entering the academic conversation on a particular topic in the context of existing scholarship.

How do I create a literature review?
The length and depth of your literature review depends on the length of your project. If you are writing a 10-page argument paper, you may have room to include 5-6 sources to review, because you will also be establishing your argument as well, but there’s no hard equation for how many/how much. Use your judgment or consult your instructor.

Here is a step-by-step approach to drafting your literature review:

1. **Define Your Goal.** If you are writing an argument paper, create a thesis statement with a clear position. If you are evaluating scientific theories, develop a hypothesis to examine. If you are providing a self-contained review of writings on a topic, state your project’s purpose. At the beginning of any paper, define your paper’s purpose so that the literature review will be anchored to a specific point of view.
2. **Do Your Research.** Review a number of texts that most closely pertain to your topic and position and are written by relevant scholars. Understand who the top voices are in your topic’s academic field, and be sure to include the most pertinent publications by those scholars.

3. **Ground Summary in Relevance.** As you summarize each publication, provide the context for that publication’s importance by tying its main points to your thesis, hypothesis, or project statement. How does it relate? Establish its relevance to the discussion.

4. **Develop Review Logically.** Think of your literature review as a development of an argument—what were the earliest ideas on the topic and how did they grow and evolve in the academic conversation of these publications? First things first.

5. **Include References/Works Cited List.** As you are writing the literature review you will mention the author names and the publication years in your text, but you will still need to compile comprehensive citations for each entry at the end of your review. Follow APA or MLA guidelines, as your course requires.

A sample Literature Review section with Annotations follows on the next page.
Use of Propofol and Emergence Agitation in Children: A Literature Review

The current literature review was conducted using multiple search engines, including CINAHL, MEDLINE, GOOGLE, and OVID. Articles were selected based on the following 3 criteria for inclusion: sevoflurane inhalational general anesthetic, propofol as an adjunct to sevoflurane general anesthetic, and propofol TIVA techniques.

Clinical Factors Related to Development of Emergence Agitation

Populations studied for EA included the following characteristics: sex, age, ethnicity, type and length of surgery, preoperative psychological status, and ASA class. Most studies failed to differentiate EA in male and female populations. Some studies did separate age cohorts; for instance, a higher rate of EA has been seen in preschool boys anesthetized with sevoflurane compared with school-aged boys (Aouad & Nasr, 2005).

The age of the child has been considered to be a factor in the development of EA postoperatively, perhaps because of the expected confusion and fright in this age group in response to perioperative events. Aono et al (1999) concluded that preschool-aged boys showed a higher rate of emergence agitation than did school-aged boys when anesthetized with sevoflurane. Voepel-Lewis et al (2003) noted that young age and anxiety level preoperatively were associated with EA. Many studies have confirmed that a younger age is a contributing factor in the development of EA, and most studies now target the ages of 2
when studying EA (Aouad & Nasr, 2005). When EA was first described by Eckenhoff in 1961, it was speculated that patients undergoing head and neck procedures may have a sense of suffocation during emergence, thus increasing the chance of EA. Surgical procedures that have been associated with a higher risk of developing EA are otorhinolaryngology, ophthalmology, and neck procedures, all of which may produce a sense of suffocation (Aouad & Nasr, 2005; Vlajkovic & Sindjelic, 2007; Voepel-Lewis, Malviya, & Tait, 2003). The length of surgery in at least one study was found to be a factor associated with increased incidence of EA (Voepel-Lewis, Malviya, & Tait, 2003). In most studies, patients have been excluded if they were above ASA classes I and II, which is one limitation of the current literature (Baum, Yemen, & Baum, 1997). Exclusion criteria also included children with psychological or emotional disorders, developmental delay, and patients who needed sedative medication before induction (Abu-Shahwan, 2008).

Propofol Total Intravenous Anesthesia

Propofol TIVA techniques have also demonstrated a reduction in EA in children. In the study by Cohen et al (2003) of sevoflurane inhalational anesthesia versus a propofol TIVA technique, there were significantly higher rates of EA in the sevoflurane group compared with the propofol group (23.1% versus 3.7%). In the study by Picard et al (2000) of the quality of recovery in children, a sevoflurane inhalational technique and propofol TIVA techniques were compared, with a reduction in EA rates observed in the propofol TIVA group (46% versus 9%, respectively). A reduction in EA from 42% to 11% was seen in children 2 to 5 years of age with propofol TIVA compared with sevoflurane inhalational general anesthesia (Nakayama, Furukawa, & Yanai, 2007). In a small study of children presenting for eye surgery (n = 16),
propofol TIVA technique had an EA incidence of 0%, in contrast to a cohort managed with sevoflurane inhalational general anesthetic, which produced an EA incidence of 38% (Uezono et al, 2000).

The studies summarized in Table 3 compare EA rates in sevoflurane alone, propofol TIVA alone compared with sevoflurane alone, propofol adjunct together with sevoflurane compared with sevoflurane alone. The findings demonstrate that either using propofol adjunctively or using propofol TIVA results in lower rates of EA compared with either sevoflurane alone or sevoflurane with adjunctive propofol.

According to the literature evidence base, there is an advantage to either propofol TIVA or adjunctive propofol with sevoflurane (compared with sevoflurane alone). We conclude, based on the current evidence, that the use of propofol is associated with a reduction in the incidence of emergence agitation.

